Low Mass Eclipsing Binaries in Sparsely Sampled Time Domain Surveys: SDSS Stripe 82

> Waqas Bhatti (JHU) Holland Ford (JHU) Michael Richmond (RIT) Larry Petro (STScI)

Introduction

- Eclipsing binaries are direct probes of fundamental properties of low mass stars: mass, radius, luminosity, surface temperature
- Observed and expected mass-radius relations of low mass EBs do not agree
- Interesting: possible relationship between orbital period and radius discrepancy?

Variables from SDSS Stripe 82

- Light-curve catalog of ~
 1.3 million point sources
- Inhomogeneous ensemble differential photometry (Honeycutt 1992)
- **16,796** variable objects
- Classification by SDSS colors and light-curve shapes
- **620** periodic variables found so far:
- **282** eclipsing binaries
- **260** RR Lyrae
- **41** high amplitude Delta Scuti
- **48** unclassified

triangles = SDSS *r*, squares = SDSS *i*, x's = SDSS *z*

M-dwarf Eclipsing Binaries

- **104** dM EBs in total
- **56** dM EBs with secure orbital periods
- 16.9 < SDSS r < 21.3
- **28** dM EBs with sufficient phase coverage for light-curve modeling
- Fit light-curve models to these objects

Light-curve Modeling

- Use differential SDSS *riz* light-curves, estimated periods, and ephemerides
- Assuming:
 - e = 0
 - no third bodies
 - no spots
- Fit:
- $(R_1 + R_2)/a$
- R_{1}/R_{2}
- L_{1}/L_{2}
- inclination
- T_1 and T_2

Summary

- Used SDSS Stripe 82 photometry to generate a light-curve catalog for ~ 1.3 million point sources
- Get the data at: http://shrike.pha.jhu.edu/stripe82-variables
 - Bhatti et al. (2010) and Bhatti et al. (in prep, ETA March 2011)
- Found ~17,000 variable objects in this sample
 - 620 periodic variables identified
 - ~ 60 M-dwarf EB candidates with secure periods
 - ~ 30 suitable for further light-curve analysis
- Modeled EB light-curves to obtain initial estimates of relative parameters
- Conducting follow-up observations to measure the masses and radii of the 5 brightest M-dwarf EB candidates